Fiber Optic Switch

Digital - Latching - Status Sensor

TYPICAL APPLICATIONS

- Optical network switching
- Optical network protection
- Optical network restoration
- Transmission equipment protection
- Loopback diagnostic testing
- Network test access
- FDDI bypass
- Local area network bypass

FEATURES

- High reliability
- Bidirectional
- Integral position sensor
- Small size
- TTL interface
- < 10 ms switching time
- 0.6 dB typical insertion loss
- PCB mountable
- Latching and non-latching configurations
- High loss path for bypass \& loopback testing (option)
- Fail-safe return to bypass mode on power loss (non-latching)

F04649

The switching mechanism is available in either a latching or non-latching version with an integral position sensor for both versions. Switches are available in On/Off, 1x2 and 2×2 configurations. There is also a high attenuation version of the 2×2 switch used for node bypass applications.

The silicon based electromechanical multimode switch uses a moving mirror actuation scheme to allow light to pass through the switch on activation or to be blocked/ diverted when the switch is deactivated in a non-latching configuration. This makes the switch particularly well suited for fail-safe bypass applications.

Astandard PCB footprint allows the switch to be conveniently mounted. The standard switch is equipped with 1 m $62.5 / 125 \mu \mathrm{~m}$ multimode fiber pigtails with no connectors, but a variety of fiber and connector options are available.

For more information about our entire line of fiber optic products, please visit our web site at www.moog.com.

SPECIFICATIONS

	Min	Typ	Max	Unit
Environmental Ratings				
Operating Temperature Range	-10	-	70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-40	-	85	${ }^{\circ} \mathrm{C}$
Humidity (non-condensing)	-	-	95	\% RH
Mechanical Life	10	-	-	M crcLe
Characteristics				
VCC (also available w/ 3.3V and 12V)	-	5	-	V
Switching Time	-	5.0	10.0	ms
Loss* 1-3 port	-	0.7	0.8	dB
Loss* 2-4 port	-	0.7	0.8	dB
Loss* 3-4 port	-	0.8	1.0	dB
Loss* 1-2 port	-	0.8	1.0	dB
Loss* 1-2 port (high atten. bypass)	4.5	5.5	6.0	dB
Crosstalk	60	-	-	dB

*Loss without connectors

PART NUMBERING

$\square \mathrm{D} \mid$

- \square_{1}^{1}

ACTIVATION VOLTAGE	
Code	Voltage
3	3.3 V
5	5 V
1	12 V
x	Other

INPUT PORTS	
Code	$\#$
01	1
02	2

OUTPUT PORTS	
Code	$\#$
01	1
02	2
B2	2

1 High Attenuation Bypass Path)
CONFIGURATIONS

TYPICAL SWITCH CONFIGURATION (2X2)	
OPTICAL PATH	STATUS
$1-3,2-4$	Logic High
$1-2,3-4$	Logic Low

SWITCH PIN CONFIGURATION	
PIN NUMBER	DESCRIPTION
1	Set
2	VCC
3	GND
4	Rst
5	Status

All dimensions are in inches.

MOOG

COMPONENTS GROUP

